Clustering with the Dynamic Time Warping Distance

Koen van Greevenbroek

Master's Thesis Seminar, 30 March 2020

Outline

Review

The DTW distance and k-Median Problem.

Understanding solutions

Exact algorithms and heuristics.

Better approximation algorithms

Approaches and obstacles.

Distance between Sequences

Naïve distance: $\sum_i d(a_i, b_i)$ or $\sqrt{\sum_i d(a_i, b_i)^2}$.

Distance between Sequences

Alignment between two sequences:

$$(1,1)=(i_1,j_1),(i_2,j_2),\ldots,(i_N,j_N)=(m,m)$$

such that the is and js are non-decreasing, and $i_{k+1}-i_k\leq 1$ and $j_{k+1}-j_k\leq 1$ for all k.

3

Distance between Sequences

Dynamic Time Warping (DTW) distance: "Minimum cost of matching up the points of the sequences."

$$\mathsf{DTW}(\mathbf{a},\mathbf{b}) = \min_{\mathcal{A} \text{ an alignment}} \sum_{(i,j) \in \mathcal{A}} d(a_i,b_j).$$

3

DTW: Recap

- We can compute DTW(\mathbf{a} , \mathbf{b}) in $O(n^2)$ with a dynamic program.
- The DTW distance is similar to the discrete Fréchet distance (∑ instead of max).
- The DTW distance does *not* satisfy the triangle-inequality:

The k-Median Problem

Let (X, D) be a set with a distance function. For a subset $P \subseteq X$, find k points $C \subseteq X$ which minimize $\sum_{p \in P} \min_{c \in C} D(c, p)$.

Facts:

- Most variations of the k-Median Problem are NP-hard.
- Over discrete metric spaces: constant factor approximation, but no $(1 + \epsilon)$ -approximation algorithm.
- Over \mathbb{R}^d : cannot compute exactly, but there are good $(1+\epsilon)$ -approximation algorithms.

Goal: Study the DTW *k*-Median Problem.

Fact: The DTW 1-Median Problem is NP-hard.

- Exponential time exact algorithms?
- Constant factor approximation algorithms?
- Hard to approximate?

Goal: Study the DTW (k, ℓ) -Median Problem.

Fact: The DTW $(1, \ell)$ -Median Problem is NP-hard.

- Exponential time exact algorithms?
- Constant factor approximation algorithms?
- Hard to approximate?

DTW 1-Median Problem: structure of optimum centre curves

Let C_p be the points on the input curves matched to a point p on the centre curve by optimum alignments.

Proposition: For p a point on an optimum centre curve, p is the 1-median of C_p in the underlying space X.

Proof: If not, we could replace p by the 1-median of C_p in X to get a better centre curve.

DTW 1-Median Problem: structure of optimum centre curves

Consequence:

Even if the underlying space X is infinite (e.g. $X = \mathbb{R}^d$), there is a finite set of potential centre curves: those using points that are 1-medians of subsets of the points of the input curves.

Note: need to compute or approximate 1-medians in X.

An exact dynamic program

n: number of curves m: length of curve

Let $OPT(\ell; i_1, i_2, ..., i_n)$ be an optimum centre curve of length ℓ for the input curves truncated to the $i_1, i_2, ..., i_n$ th points, respectively.

The dynamic programming table is of size m^{n+1} .

An exact dynamic program

n: number of curves m: length of curve

To compute $\mathrm{OPT}(\ell;i_1,\ldots,i_n)$, use the previous solutions $\mathrm{OPT}(\ell-1;j_1,\ldots,j_n)$ for all $j_1\leq i_1,\ldots,j_n\leq i_n$.

The last point on $OPT(\ell, i_1, i_2, i_3)$ is the 1-median of $a_{j_1+1}, \ldots, a_{i_1}, b_{j_2+1}, \ldots, b_{i_2}, c_{j_3+1}, \ldots, c_{i_3}$, and possibly a_{j_1}, b_{j_2} and c_{j_3} . (Case of n=3 as above.)

An exact dynamic program

n: number of curvesm: length of curve

The resulting dynamic programming algorithm has a time complexity of $O(m^{2n+3}2^nn)$.

Is there an exact algorithm with runtime close to $O(m^n)$?

A heuristic

There is a useful local optimization heuristic similar to the *k*-means algorithm, called the *DTW Barycentric Average (DBA)* algorithm. Repeat the following two steps:

1. Align: find optimum alignments.

2. **Refine:** set each p to the 1-median of C_p .

Example:

The DBA heuristic: facts

- Widely used in practice: good results, fast, easy.
- A family of examples show that the DBA algorithm does not have a constant factor approximation ratio.

Optimum centre curve:

DBA gets stuck here:

Are there "good" ways to initialize the DBA heuristic?

Better approximation algorithms

Difficulty in finding an optimum centre curve:

Points: There are up to $(m(m+1)/2)^n$ potential centre curve points: 1-medians of subsets of points on the input curves that could be used for a centre curve.

Order: There are N^m ordered sequences of length m on any N distinct points.

Note:

- The number of points can be limited.
- The NP-hardness proof for the DTW 1-Median Problem uses only the points $\{-1,0,1\}$: the *order* is the hardest part.

Discrete solutions

A *discrete* centre curve is restrict to only using points from the input curves.

This is a 2-approx. when the underlying space is metric.

Reduces the number of potential centre curve points from $(m(m+1)/2)^n$ to mn.

Solutions on a grid (for
$$X = \mathbb{R}^d$$
)

A *grid* centre curve is restrict to only using points on a grid with a given resolution.

Used to develop $(1 + \epsilon)$ -approximation algorithms for the $(1, \ell)$ -Median Problem w.r.t. the discrete Fréchet distance, for constant ℓ . May make the number of potential centre curve points *independent* of n.

Linear programming formulation

We can write the DTW distance between curves **a** and **b** as a linear program. Let $G_{a,b}$ be an $m \times m$ grid graph with all directed edges makes steps (0,1), (1,0) and (1,1). Cost of edges into (i,j) is $d(a_i,b_j)$. Add cost of $d(a_1,b_1)$ to outgoing edges from (1,1). Let (1,1) be a source and (m,m) a sink of value 1.

 $DTW(\mathbf{a}, \mathbf{b}) = \min\{c(f) \mid f \text{ a flow in } G_{\mathbf{a}, \mathbf{b}}\}.$

Linear programming formulation

A fractional curve **x** on a set of points *P* given by variables x_{ia} for $1 \le i \le m$ and $1 \le a \le |P|$ with $\sum_{a=1}^{|P|} x_{ia} = 1$ for all *i*:

We can define the DTW distance between \mathbf{x} and a normal curve \mathbf{b} . Define a graph $G_{\mathbf{x},\mathbf{b}}$ analogous to $G_{\mathbf{a},\mathbf{b}}$ but on a $|P| \times m \times m$ grid, and let

$$DTW(\mathbf{x}, \mathbf{b}) = \min\{c(f) \mid f \text{ a flow in } G_{\mathbf{x}, \mathbf{b}}\}.$$

Linear programming formulation

Let $\mathcal S$ be n curves. A relaxation of the Discrete 1-Median Problem on $\mathcal S$ is

$$\min \left\{ \sum_{\mathbf{s} \in \mathcal{S}} c(f_{\mathbf{s}}) \mid f_{\mathbf{s}} \text{ a flow in } G_{\mathbf{x},\mathbf{s}}, \ 0 \leq x_{ia} \leq 1 \right\}.$$

Although we can solve the above LP in polynomial time, the integrality ratio is unbounded.

Example

Input sequences: (0, 1, 0, 1, 0, 0) and (0, 1, 0, 0, 0, 0). The fractional centre curve $(0, \{0, 1\}, \{0, 1\}, \{0, 1\}, \{0, 1\}, 0)$ has cost 0, but there is no integral centre curve of cost 0.

