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Today, we continue our discussion of simple, non-truthful mechanisms. We consider combi-
natorial auctions, so there are m items M , which can each be allocated at most once. Bidders
have valuation functions vi : 2M → R≥0.

A mechanism M = (f, p) defines a set of bids Bi for each player i ∈ N and consists of an
outcome rule f : B → X, where B = B1 ×B2 × · · · ×Bn, and a payment rule p : B → Rn≥0.

Last time, we introduced the definition of a smooth mechanism.

Definition 16.1 (Smooth Mechanism, simplified version). Let λ, µ ≥ 0. A mechanism M is
(λ, µ)-smooth if for any valuation profile v ∈ V for each player i ∈ N there exists a bid b∗i such
that for any profile of bids b ∈ B we have∑

i∈N
ui(b∗i , b−i) ≥ λ ·OPT (v)− µ

∑
i∈N

pi(b) .

It is easy to see that (λ, µ)-smoothness implies that the Price of Anarchy for pure Nash
equilibria is at most max{µ,1}

λ . This proof also generalizes to (coarse) correlated equilibria. In a
more complex argument, we were also able to show that the bound also holds for Bayes-Nash
equilibria. Given these results, it is enough to show smoothness of mechanisms to bound the
Price of Anarchy for all equilibrium concepts that we introduced so far. Interestingly, all results
that we cover today were discovered before the smoothness framework, but the basic arguments
were already present in the original publications.

1 Item Bidding
We first consider a truly simple, indirect mechanism. Instead of reporting complex functions
2M → R≥0, the bidders now simply report a single bid bi,j for each item j. Each item is sold in
a separate first-price or second price-auction. That is, item j is assigned to the bidder i with the
highest bid bi,j . He has to pay bi,j .

A bidder can potentially win multiple items, even if he only wants one. Recall unit-demand
valuations: These are functions vi such that there are vi,j ∈ R≥0 such that vi(S) = maxj∈S vi,j .
If, for example, vi,1 = . . . = vi,m = 1, then bidder i has a value of 1 as long as he receives an
item, no matter which. There is no way to express this in a bid. Therefore, this is not a direct
mechanism and it cannot be truthful. However, its Price of Anarchy is bounded by 2.

Theorem 16.2. For unit-demand valuations, item bidding with first-price payments is (1
2 , 1)-

smooth.

Proof. We have to devise the deviation bids b∗i for all bidders. These bids may depend on the
valuations v but not on the bids. Consider the welfare-maximizing allocation on v. Let ji be the
item that is assigned to bidder i in this allocation. If i does not get any item, set ji to ⊥.

We now set b∗i,j = vi,j

2 if j = ji and 0 otherwise. That is, in the deviation bid, each bidder
bids half his value on the item that he is supposed to get.

Given any bid profile b, bidder i’s utility after deviating is vi,ji
2 unless another bidder bids at

least vi,ji
2 for item ji in b. Therefore

ui((b∗i , b−i), vi) ≥
vi,ji
2 −max

i′ 6=i
bi′,ji ≥

vi,ji
2 −max

i′
bi′,ji .
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If we take the sum over all bidders i, then∑
i∈N

ui((b∗i , b−i), vi) ≥
∑
i∈N

vi,ji
2 −

∑
i∈N

max
i′

bi′,ji .

Observe that
∑
i∈N vi,ji = OPT (v) because of the way we defined ji. Furthermore, we have∑

i∈N maxi′ bi′,ji ≤
∑
j∈M maxi′ bi′,j =

∑
i∈N pi(b) because every item is counted at most once:

For each item j there is at most one i such that j = ji. That is,∑
i∈N

ui((b∗i , b−i), vi) ≥
1
2OPT (v)−

∑
i∈N

pi(b) ,

which is exactly (1
2 , 1)-smoothness.

So, immediately we get that the Price of Anarchy for pure Nash equilibria is at most 2.

2 A Greedy Mechanism
Instead of selling items individually, one can also apply a smarter allocation algorithm and use a
direct mechanism. We will now consider a mechanism based on the Greedy-by-Sqrt-Value-Density
algorithm for combinatorial auctions. We introduced it as algorithm for single-minded bidders.
That is, each bidder is only interested in a single set of items. Under these circumstances, it
can be turned into a truthful mechanism. Beyond this single-parameter domain, it cannot be
turned into a truthful mechanism. However, as we will show, it can be turned into a mechanism
of reasonable Price of Anarchy.

We assume that bidders report functions bi : 2M → R≥0. (To ensure polynomial running
time, only a polynomial number of bundles should have a positive value.) On the pairs (i, S)
we run the greedy allocation rule. Each bidder gets only one such bundle S. If the mechanism
wanted to allocate not only S to i but also S′, it would have to select the pair (i, S ∪ S′).

By a simple extension of our analysis for single-minded bidders, one can show that the
computed allocation is a

√
2m-approximation of the optimal declared welfare. However, it cannot

be turned into a truthful mechanism as we showed even for single-minded valuations. Therefore,
we build a very simple non-truthful mechanism. We combine the algorithm with a first-price
payment rule: If bidder i gets set S, then his payment is exactly his bid on this set bi(S).

First-Price Greedy Mechanism for Combinatorial Auctions

1. Collect bids b.

2. Sort the player-bundle pairs (i, S) by non-increasing score bi(S)√
|S|

.

3. Go through the sorted list and assign S to player i unless

(a) player i has already been allocated a bundle or
(b) one or more of the items in S has already been allocated.

4. Charge each player i his bid bi(S) on the bundle S he is allocated.

Theorem 16.3 (Borodin and Lucier, 2010). The first-price greedy mechanism for multi-minded
CAs is (1/2,

√
2m)-smooth.

Proof. Let (X∗1 , . . . , X∗n) be an allocation that maximizes social welfare. That is, OPT (v) =∑
i∈N vi(X∗i ). For each player i ∈ N let b∗i be the single-minded declaration for set X∗i at value

vi(X∗i )/2. So, by bidding b∗i , bidder i only tries to win the set that he is allocated in the social
optimum.
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Consider an arbitrary bid profile b. We know that the algorithm is monotone on single-minded
bids. That is, if bidder i reports that he is only interested in set S, then there is a smallest bid
with which player i wins bundle S against bids b−i. Call this the critical bid τi(S, b−i).

In particular, bidding b∗i against b−i, bidder i may or may not win the set X∗i . If he wins
then ui((b∗i , b−i), vi) = vi(X∗i )− vi(X∗i )/2 = vi(X∗i )/2. If he loses, then the critical bid is at least
vi(X∗i )/2. So in either case,

ui(b∗i , b−i) ≥
1
2vi(X

∗
i )− τi(X∗i , b−i) .

Summing over all players i ∈ N we obtain

∑
i∈N

ui(b∗i , b−i) ≥
∑
i∈N

(
vi(X∗i )

2 − τi(X∗i , b−i)
)

= 1
2 ·OPT (v)−

∑
i∈N

τi(X∗i , b−i) .

Below, we will show the following lemma.

Lemma 16.4. Fix bids b ∈ B. Let f(b) be the allocation chosen by the greedy mechanism for
bids b and let X∗ be another feasible allocation. Then,∑

i∈N
τi(X∗i , b−i) ≤

√
2m

∑
i∈N

bi(fi(b)) .

Once we have this lemma, we get∑
i∈N

ui(b∗i , b−i) ≥
1
2 ·OPT (v)−

√
2m ·

∑
i∈N

bi(fi(b))

= 1
2 ·OPT (v)−

√
2m ·

∑
i∈N

pi(b) ,

where the last step uses that the mechanism is a first-price mechanism.

Note that apart from Lemma 16.4 this proof is actually pretty generic. It looks exactly like
the smoothness proof for a first-price auction and uses hardly any property of the mechanism.
It still remains to prove Lemma 16.4, which indeed relies on the mechanism using a greedy rule.

Proof of Lemma 16.4. Let ε > 0. For all i, let b∗i be the single-minded declaration for set X∗i at
value τi(X∗i , b−i)− ε. Let b′i be the point-wise maximum of bi and b∗i . A crucial property of the
greedy algorithm is that the allocation it chooses on profile b′ is the same as on b. The reason
is that all introduced new bids are below the respective critical bids. Some pairs (i, S) move
towards the front in the sorted list. However, none of them moves beyond the point at which
it gets accepted. So, its presence does not have any influence of the algorithm. So, formally,
f(b) = f(b′). Besides, if bi(S) 6= b′i(S) for a set S, then bidder i does not get set S in f(b) or
f(b′).

That is, ∑
i∈N

bi(fi(b)) =
∑
i∈N

bi(fi(b′)) =
∑
i∈N

b′i(fi(b′)) .

Now we use the fact that the algorithm is an
√

2m-approximation. As X∗ is a feasible
allocation, we have ∑

i∈N
b′i(fi(b′)) ≥

1√
2m

∑
i∈N

b′i(X∗i ) .

By definition of b′i, we also have∑
i∈N

b′i(X∗i ) =
∑
i∈N

max {bi(X∗i ), τi(X∗i , b−i)− ε} ≥
∑
i∈N

(τi(X∗i , b−i)− ε) =
∑
i∈N

τi(X∗i , b−i)− nε .
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So, in combination ∑
i∈N

bi(fi(b)) ≥
1√
2m

∑
i∈N

τi(X∗i , b−i)− nε .

This holds for all ε > 0. The claim follows by taking the limit as ε→ 0.

3 Second-Price Auctions
Our results so far were for generalization of the first-price auction. Maybe it would be more
natural to generalize the second-price auction. In the case of item bidding this would mean that
each item is sold in a separate single-item auction. For the greedy mechanism, we could charge
every player the respective critical bid. These are particularly interesting mechanisms because
they are truthful in special cases. So, giving a Price-of-Anarchy analysis would show that they
are robust beyond the truthful dominant-strategy equilibrium.

Unfortunately, the techniques that we have learned up to now are not enough to bound the
Price of Anarchy even for the second-price auction. This is for a good reason: Without further
assumptions, it is unbounded.
Observation 16.5. Consider a single-item second-price auction with two bidders of values
v1 = 1, v2 = ε for some small ε. Now b1 = 0, b2 = 1 is pure Nash equilibrium. Its social welfare
is ε compared to optimal social welfare 1.

The reason why we get this bad equilibrium is that overbidding is only weakly dominated. So,
bidders cannot increase their utility by overbidding but this does not mean that it decreases.

This is also true in general item bidding with second-price auctions.
Theorem 16.6. Consider a pure Nash equilibrium b of item bidding with second-price payments
and unit-demand bidders. Let X1, . . . , Xn be the resulting allocation. If for all bidders i we have∑

j∈Xi
bi,j ≤ vi(Xi) (weak no-overbidding), then

∑
i∈N vi(Xi) ≥ 1

2OPT (v).
Proof. We mostly follow the steps in the proof of Theorem 16.2. Again, we devise a deviation
bid b∗i for every bidders. Consider the welfare-maximization allocation on v. Let ji be the item
that is assigned to bidder i in this allocation. If i does not get any item, set ji to ⊥.

This time, we set b∗i,j = vi,j if j = ji and 0 otherwise.
Bidder i’s utility in (b∗i , b−i) is vi,ji −maxi′ 6=i bi′,ji if he wins the item, otherwise it is 0 but

in this case maxi′ 6=i bi,ji ≥ vi,ji . That is, we always have

ui((b∗i , b−i), vi) ≥ vi,ji −max
i′ 6=i

bi′,ji ≥ vi,ji −max
i′

bi′,ji .

By the equilibrium property ui(b, vi) ≥ ui((b∗i , b−i), vi). So, taking the sum over all bidders

SWv(b) ≥
∑
i∈N

ui(b, vi) ≥
∑
i∈N

vi,ji −
∑
i∈N

max
i′

bi′,ji .

Again,
∑
i∈N vi,ji = OPT (v) and

∑
i∈N maxi′ bi′,ji ≤

∑
j∈M maxi bi,j .

However, now
∑
j∈M maxi bi,j does not necessarily have to do anything with the payments.

For every item maxi bi,j may be a lot higher than what the winner has to pay for it. Here, the
weak no-overbidding assumption comes to our rescue. We can write∑

j∈M
max
i
bi,j =

∑
i∈N

∑
j∈Xi

bi,j ≤
∑
i∈N

vi(Xi) = SWv(b) .

This gives us
SWv(b) ≥ OPT (v)− SWv(b) ,

which implies our claim.

Of course, there is also a generalization of this proof to other equilibrium concepts and a
more general form of smoothness called weak smoothness.
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