## Algorithms and Uncertainty

Summer Term 2020

## Exercise Set 6

Exercise 1:

(3+4+2 Points)

(4 Points)

We consider the following modified version of the Boosted Sampling algorithm for Stochastic Steiner Tree from the lecture. The only difference is that it uses  $\ell$  sets  $S_1, \ldots, S_\ell$  in the first phase. Show that the approximation guarantee is  $\max\{2(1+\frac{\lambda}{\ell+1}), 2(\frac{\ell}{\lambda}+1)\}$ . To this end, consider the following tasks concerning the cost of the respective phases.

- (a) Give an appropriate analysis for the first phase.
- (b) Give an appropriate analysis for the second phase.
- (c) Combine both results to derive the desired approximation guarantee.

## Exercise 2:

(2+2+2 Points) We consider a Markov decision process with  $\mathcal{S} = \{1, 2, 3\}, \mathcal{A} = \{a, b\}$ . The state transitions are deterministic as displayed in this diagram; the numbers in the edge labels are the respective rewards.



We consider an infinite time horizon with discount factor  $\gamma = \frac{1}{2}$ .

- (a) Give an optimal policy and the function  $s \mapsto V^*(s)$ .
- (b) Perform the first six steps of value iteration starting from  $W^{(0)} = (0, 0, 0)$ .
- (c) Perform policy iteration until convergence starting from the policy that always uses action a.

## Exercise 3:

We define a more cautious version of value iteration. It uses the operator T', which is defined by  $T'(W) = \eta T(W) + (1 - \eta)W$  for an arbitrary  $\eta \in (0, 1)$ . Show that this algorithm also converges to the unique fixed point of T.