Algorithms and Uncertainty

Summer Term 2021 Exercise Set 10

Exercise 1: Consider $f : \mathbb{R}^2 \longrightarrow \mathbb{R} : \mathbf{x} \mapsto \mathbf{x}^T \mathbf{x}$. Show that f is convex.

Exercise 2: (3 Points) Let \mathcal{X} be a convex set. Prove the following statement: If a function $f : \mathcal{X} \to \mathbb{R}$ is convex, then any local minimum of f in \mathcal{X} is also a global minimum.

Exercise 3:

Show that Follow-the-Regularized-Leader with Entropical regularization in the experts setting is equivalent to the Multiplicative Weights algorithm.

Hint: It can be helpful to use a Lagrange multiplier, which works in this special case as follows: For **x** to be a local optimum of F subject to $\sum_{i=1}^{d} x_i = 1$, it is necessary that there exists a $\lambda \in \mathbb{R}$ such that $\frac{\partial F}{\partial x_i}(\mathbf{x}) - \lambda = 0$ for all i.

(3 Points)

(5 Points)