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We have seen many different approaches to mechanism design so far, all talking about
auctions in some form. The most common form of a mechanism, however, is very different:
Whenever we go shopping, we are not asked to bid for items. Instead, each of them has a price
tag. We may either buy the item at this price or leave it. Therefore, we now turn to the question
how well such prices can coordinate markets. Today, we will start with some classic economic
theory about this.

1 Setting and Definition
We consider the standard setting of combinatorial auctions. There are n bidders N and m items
M . Feasible allocations are vectors S = (S1, . . . , Sn), Si ⊆M for all i ∈ N , and Si ∩ Si′ = ∅ for
i 6= i′. Each bidder has a valuation function vi : 2M → R≥0. We consider full information. That
is, the valuation functions are fixed and known.

A Walrasian equilibrium is an equilibrium in the sense that it is a stable state. In contrast
to the equilibrium concepts that we got to know so far, it does not talk about players’ strategies
but rather about prices making an allocation stable.

Definition 17.1. A pair of a price vector q ∈ Rm
≥0 and an allocation S = (S1, . . . , Sn) is a

Walrasian Equilibrium if

(a) Each bidder i gets a bundle that maximizes utility:

vi(Si)−
∑
j∈Si

qj ≥ vi(S′i)−
∑
j∈S′i

qj for all S′i ⊆M .

(b) If an item j is unallocated, i.e., j 6∈
⋃

i∈N Si, then qj = 0.

Example 17.2. If there is only a single item and v1 ≥ v2 ≥ . . . ≥ vn, then the Walrasian
equilibria are exactly the prices q1 ∈ [v2, v1] paired with the allocation that assigns the item to
bidder 1.

Example 17.3. We now consider multiple items with unit-demand valuations. That is, a
bidder’s valuation is of the form vi(S) = maxj∈S vi,j for vi,j ≥ 0. Assigning the items is just the
same as finding a matching in a complete bipartite graphs whose vertices are N ∪M . The edge
between i ∈ N and j ∈M has weight vi,j.

We consider an example with three bidders 1, 2, 3 and three items A, B, C. We only draw
edges of positive value.
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The allocation is given by the thick edges. One choice for q would be qA = 3, qB = 1, qC = 0.
These are the prices that come out of the VCG payments, a connection that we will see later.
But it is not the only feasible choice for q. An alternative would be qA = 10, qB = 3, qC = 1.

Example 17.4. There are profiles of valuation functions for which no Walrasian equilibrium
exists. Consider the example of three single-minded bidders. Bidder 1 wants items 1 and 2,
bidder 2 wants items 1 and 3, bidder 3 wants items 2 and 3. Each of them has a value of 1 for
getting both items and 0 otherwise.

We now have to distinguish multiple cases how the allocation S = (S1, S2, S3) is chosen. For
no such allocation there is a price vector q that fulfills both conditions. Consider, for example,
S1 = {1, 2}, S2 = S3 = ∅. Then q3 = 0 because it is not allocated. This means that q1 ≥ 1
because otherwise bidder 2 would not be happy. Analogously, q2 ≥ 1. This, however, means that
v1(S1)−

∑
j∈S1 qj ≤ 1− 2 = −1 < 0 = v1(∅)−

∑
j∈∅ qj. This is a contradiction to condition (a).

2 First Welfare Theorem
Our first theorem is a very famous one: It tells us that the allocation of any Walrasian equilibrium
maximizes social welfare. This has often been interpreted as “markets are efficient”. Undoubtedly,
this is a little questionable. One of many reasons is that Walrasian equilibria do not always
exist.

Theorem 17.5. If (q, S) is a Walrasian equilibrium, then S maximizes social welfare.

Proof. Let S∗ = (S∗1 , . . . , S∗n) be an allocation that maximizes social welfare. Then for each
bidder i we have

vi(Si)−
∑
j∈Si

qj ≥ vi(S∗i )−
∑

j∈S∗i

qj .

Summing this inequality over all bidder i yields∑
i∈N

vi(Si)−
∑
i∈N

∑
j∈Si

qj ≥
∑
i∈N

vi(S∗i )−
∑
i∈N

∑
j∈S∗i

qj .

Observe that
∑

i∈N

∑
j∈Si

qj =
∑

j∈M qj because each item is allocated at most once in S and
items that are not allocated in S have a zero price by property (b). Furthermore

∑
i∈N

∑
j∈S∗i

qj ≤∑
j∈M qj because also in S∗ each item is allocated at most once. Unallocated items may have a

non-zero price but it cannot be negative. This directly implies∑
i∈N

vi(Si) ≥
∑
i∈N

vi(S∗i ) ,

which means that S also maximizes social welfare.

If you are familiar with linear programming and duality, this argument might look familiar.
Indeed, it is nothing but weak LP duality: The price vector q is a feasible solution to the dual
LP that certifies optimality of S.

3 Unit-Demand VCG Outcome as Walrasian Equilibrium
As our second main result, we will now see an interesting connection between Walrasian equilibria
and the VCG mechanism if bidders have unit-demand valuations. To simplify notation, we
assume that there are more items than bidders. So, every bidder gets exactly one item.

Let S denote a social-welfare maximizing allocation. Let S−i denote the same if bidder i is
excluded. Recall that on truthful bids the VCG mechanism defines the payment of bidder i as
pi(v) =

∑
i′ 6=i vi′(S−i

i′ )−
∑

i′ 6=i vi′(Si′).
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We use this to define item prices. If item j is unallocated in S, set qj = 0. If item j is
assigned to bidder i, set its price to bidder i’s VCG payment. That is,

qj = pi(v) =
∑
i′ 6=i

vi′(S−i
i′ )−

∑
i′ 6=i

vi′(Si′)

Theorem 17.6. The price vector q defined by the VCG mechanism for unit-demand valuations
combined with any social-welfare maximizing allocation is a Walrasian equilibrium.

So, this means that in particular a Walrasian equilibrium always exists if valuations are
unit-demand. To prove the theorem, we need an important lemma, which is also interesting on
its own right. We let S+j be a social-welfare optimizing allocation if there are two copies of j.
To avoid issues of tie-breaking, let it be different from S only when the welfare is strictly higher
than in S.

Lemma 17.7. For every item j ∈M

qj =
∑
i′∈N

vi′(S+j
i′ )−

∑
i′∈N

vi′(Si′) .

That is, instead of removing the bidder who gets the item, we might as well add another
copy of it. This mirrors our intuition of VCG payments. A bidder has to pay by how much he
hurts the others, that is, by taking away the item.

Proof. The proof relies on two intuitive facts regarding the allocation S+j :

(i) If j is not allocated in S, neither copy is allocated in S+j .

(ii) If j is allocated to bidder i in S, bidder i also receives one copy of j in S+j .

Both actually should not be too surprising. One can prove them using common arguments about
bipartite matching. Let us see a proof sketch for (i). We first observe that if S+j allocates only
one copy of j we could simply use it as S. This then contradicts the optimality of S or the
definition of S+j . If both copies are allocated, we can draw the following picture.

bidders items

two copies of item j

The solid edges indicate the assignment in S whereas the dashed one indicate the assignment
in S+j . Observe that we have two disjoint alternating paths starting at the two copies of j.
They represent how S+j gets its higher welfare compared to S. So, the overall weight of dashed
edges is higher than the overall weight of solid edges. However, as we have two disjoint paths,
this property has to hold for at least one of them as well. This means, we could improve S by
allocating j once according to that path.
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Coming to the proof of our lemma, we distinguish whether the item is allocated in S or not.
If it is not allocated in S, then qj = 0. Also, S and S+j are identical by property (i).

If item j is allocated to bidder i in S, then qj =
∑

i′ 6=i vi′(S−i
i′ )−

∑
i′ 6=i vi′(Si′). Allocation

S−i allocates each item at most once, not allocating anything to bidder i. By property (ii), the
allocation S+j has the same property if we leave out bidder i. Both maximize social welfare
under this constraint, so their social welfare (not counting bidder i on either side) is the same:∑

i′ 6=i vi′(S−i
i′ ) =

∑
i′ 6=i vi′(S+j

i′ ).
This implies

qj =
∑
i′ 6=i

vi′(S−i
i′ )−

∑
i′ 6=i

vi′(Si′) =
∑
i′ 6=i

vi′(S+j
i′ )−

∑
i′ 6=i

vi′(Si′)

=

∑
i′ 6=i

vi′(S+j
i′ ) + vi,j

−
∑

i′ 6=i

vi′(Si′) + vi,j


=

∑
i′

vi′(S+j
i′ )−

∑
i′

vi′(Si′) .

So, also in this case the lemma holds.

Proof of Theorem 17.6. By Lemma 17.7, we have

q` =
∑
i′

vi′(S+`
i′ )−

∑
i′

vi′(Si′) .

What is
∑

i′ vi′(S+`
i′ )? It is the highest welfare that we can achieve if there is an extra copy

of `. One possible allocation in this case is to assign the new copy of item ` to bidder i and to
make the other allocation according to S−i. It may not be the best allocation but it is certainly
a feasible one. Therefore ∑

i′

vi′(S+`
i′ ) ≥ vi,` +

∑
i′ 6=i

vi′(S−i
i′ ) .

This gives us a lower bound on q`

q` =
∑
i′

vi′(S+`
i′ )−

∑
i′

vi′(Si′) ≥ vi,` +
∑
i′ 6=i

vi′(S−i
i′ )−

∑
i′

vi′(Si′) .

Note that ∑
i′ 6=i

vi′(S−i
i′ )−

∑
i′

vi′(Si′) =
∑
i′ 6=i

vi′(S−i
i′ )−

∑
i′ 6=i

vi′(Si′)− vi,j = qj − vi,j .

So, in combination q` ≥ vi,` + qj − vi,j , or equivalently vi,j − qj ≥ vi,` − q`.
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