

Algorithms and Uncertainty

Winter Term 2025/26

Exercise Set 14

If you would like to present one of your solutions in class, please use the following link to book a presentation slot by Monday evening:

<https://terminplaner6.dfn.de/b/e280bc705b3f687076daf1e76e3ec3dd-1580390>

A short meeting to discuss your solution is mandatory before presenting it in class. To book a time slot for this meeting, please use the following link by Monday evening as well:

<https://terminplaner6.dfn.de/b/e24010b985e306418ae65927972909b2-1580378>

Exercise 1: (3 Points)

Prove Observation 24.4: If R is σ -strongly convex and f_1, f_2, \dots are convex then $R + \sum_t f_t$ is σ -strongly convex.

Exercise 2: (4 Points)

Derive a regret bound for Follow-the-Regularized-Leader if the Lipschitz constant depends on the time step, that is,

$$f_t(\mathbf{u}) - f_t(\mathbf{v}) \leq L_t \|\mathbf{u} - \mathbf{v}\| \quad \text{for all } \mathbf{u}, \mathbf{v} \in S .$$

Exercise 3: (4 Points)

Let $G = (V, E)$ be a graph with edge capacities $(c_e)_{e \in E}$, a source $s \in V$ and a sink $t \in V$. Let \mathcal{P} be the set of all s-t paths in G and $|\mathcal{P}| \leq m = |E|$. Show that, if $T \geq \frac{4}{\epsilon^2} |\mathcal{P}| \log m$, the algorithm from lecture 24 then guarantees $\sum_{P \in \mathcal{P}} x_P \geq (1 - \epsilon)F^*$ when using Multiplicative Weights as the experts algorithm with $\eta = \frac{\epsilon}{2}$.